

HIV/AIDS Clinical Research Networks 2006 - 2013

DAIDS Scientific Priorities

NIAID Pre-application Meeting December 13, 2004

Agenda-overview

- > Scientific framework
- > Areas of scientific emphasis
- Cross-cutting principles, coordination and collaboration

DAIDS Mission: Help Stop the HIV/AIDS Epidemic

- A. Stop Progression, Development of Resistance
- B. Lower Set Point or Eliminate HIV
- C. Lower Initial Peak of Viremia

Over-arching Goals of the RFA

- Establish a consortium of linked clinical trials networks
- > Implement a comprehensive clinical research agenda
- Coordinate activities across networks to ensure high caliber science
- > Increase efficiency through resource sharing;
- > Flexibly allocate and distribute resources in response to evolving priority research opportunities
- > Leverage resources within and outside the networks

Areas of Research Emphasis

- > Vaccine Research and Development
- > Translational Research/Drug Development
- Optimization of Clinical Management, Including Co-Morbidities
- > Microbicides
- Prevention of Mother-to-Child Transmission (MTCT) of HIV
- > Prevention of HIV Infection

Color Scheme

- ➤ Black = Highest priority for NIAID
- ➤ Grey = Will require partnering and/or additional resources to fully accomplish
- >Blue = NIH research partners

Vaccine Research and Development: Objectives

- Identify a vaccine that is safe and effective (at least partially)
- ➤ Benefit the individual, e.g. infection or disease progression
 - Reduce/prevent secondary transmission
- Decipher correlate(s) of immune protection
- > Improve in vaccine design, e.g. clades, routes

- Evaluate/compare selected candidates in phase 1 and 2 trials (VRC, Grantees, Companies, Non-profits, EU, Others)
 - Safety
 - Immunogenicity: qualitative and quantitative
 - Systemic and mucosal
 - Humoral and cellular
- > Link with vaccine designers
 - Anti-vector immunity
- Down select and advance most promising candidates

- > Evaluate candidates into phase 2b/3
 - Test candidates for efficacy; include women, and minorities
 - Identify immunologic correlate(s) of protection
- ➤ Link with cohort/epi studies to prepare populations; consider community trials as warranted; adolescents (NICHD/ATN)
- ➤ Implement strategy to ensure rapid licensure in special populations and all at-risk groups, including adolescents (NICHD/ATN)

- Develop and conduct lab assays to evaluate immune responses and compare candidate vaccines
 - Validate assays to be used in pivotal trials
 - Develop methods to optimize signal (collection, processing, freezing, shipping) (peptide pools to make relevant comparisons)
 - Implement QA/QC programs
 - Develop new assays to measure full breadth of induced immune responses

- > Develop novel trial designs
 - Develop strategies to standardize, optimize trials
 - Optimize designs to accelerate licensure
- > Contribute to discussions on trial design to facilitate US and international licensure

- Link with animal model studies
- ➤ Decipher relevance of genetic subtypes
- Evaluate host factors that may impact outcomes (e.g. gender, HLA, etc)

- Pursue innovative approaches e.g. mucosal immunity, combinations, enhanced innate immunity, novel vaccines such as regulatory proteins (NCI)
- Oral and nasopharyngeal routes/adjuvants (NIDCR)
- Explore factors that affect understanding about product efficacy, acceptance, use; impact on risk reduction (NIMH)
- > Explore factors that affect understanding about product efficacy, vaccine use (NIMH)

- > Transparency, cooperation, collaboration
- ➤ Work with others on HIV vaccine R&D, e.g. PAVE, Enterprise
 - Lab assays, reagents for cross-system comparisons
 - Clinical site development, training, etc.
- > Link with others
 - Vaccines for prevention of MTCT
 - Therapeutic vaccines
 - Cancer vaccines (NCI)
 - Care and treatment programs in resource poor settings

Therapeutics Clinical Research

- ➤ Translational Research/Drug Development
- > Optimization of Clinical Management

Therapeutics Clinical Research: Objectives

- ➤ To prevent HIV disease progression and deaths
 - Through the development of innovative strategies for antiretroviral treatment (ART) that provide optimum initial and subsequent ART regimens
 - Through effective use of new agents or novel classes of antiretroviral drugs, as they are developed

Therapeutics Clinical Research: Objectives

- ➤ To identify, prevent and treat the complications of both HIV disease and antiretroviral therapies
- ➤ To prevent transmission of HIV infection and emergence of drug resistant virus in the community through therapeutic intervention
- >Ultimately CURE

Therapeutics Clinical Research: Overarching Principles

- ➤ Identify underserved or disenfranchised populations (e.g. women, minorities, adolescents, young children)
- > Specify barriers to participation in clinical research for these and other special populations
- Develop strategies to address the problems identified above

Therapeutics Clinical Research: Overarching Principles

- Incorporate studies of acutely infected individuals in all aspects of research – particular focus on role of early interventions in modifying viral set point, long term outcome and transmission rates
- Pharmacogenomics Investigate the role of individual and population genetic differences in responses to therapy, incidence of complications, and course of disease

- Evaluate anti-HIV compounds aimed at novel mechanisms of action/new targets including small molecule entry inhibitors, uncoating inhibitors, integrase and maturation inhibitors
- Evaluate new molecules with unique and improved features (resistance, pharmacology, toxicity profiles)

- ➤ Evaluate therapies for patients with co-infections, especially Hepatitis C, Tuberculosis, Malaria and Papillomavirus infections
- Focus on studies that address the highest public health needs and which expand and complement studies being conducted by pharmaceutical industry

- ➤ Integrate immune-based therapies in treatment regimens, emphasizing mechanisms of antiviral effect and immune reconstitution
- Conduct pharmacokinetic studies in children and adolescents to enable licensure and optimize use
- > Test new hypotheses generated by pathogenesis studies

- ➤ With NICHD address research agenda relevant to pregnant women, children and adolescents especially pharmacokinetics and safety data relevant to licensure and optimum use in these populations
- ➤ With NCI implement studies in areas of mutual scientific interest especially HPV and Hepatitis

➤ Study aspects of HIV pathogenesis including viral evolution, host response, elimination of viral reservoirs and co-factors which influence response to therapy in treated subjects

Optimization of Clinical Management

- >Study effectiveness of new regimens, focusing on agents with novel mechanisms of action or new treatment combination strategies
- ➤ Optimize therapies on the basis of safety, adherence, resistance, durability of response and prevention of transmission
- ➤ Evaluate therapies and therapeutic strategies for co-infections

Optimization of Clinical Management

- > Evaluate therapies and therapeutic strategies for co-infections
 - Prophylaxis
 - Acute treatment
 - Interaction with antiretroviral agents.

Optimization of Clinical Management:

With NCI, NIDDK, NHBLI, NIMH, NINDS

- ➤ Integrate studies of malignancies, particularly KS and those associated with viral hepatitis, papillomavirus, and EBV into research agenda
- ➤ Facilitate treatment and evaluation of metabolic abnormalities and other complications of ARV therapy and/or progressive HIV infection with other ICs with special expertise

MTCT Research

Mother to Child Transmission (MTCT) Research: Objectives (NICHD)

- ➤ Identify safe, practical, and more effective approaches to further reduce MTCT, especially in resource-poor settings and breastfeeding populations
- ➤ Define treatment options and adherence approaches for both mother and child (separately and as a unit)
- ➤ Provide technical knowledge to ensure prolonged success of MTCT programs

- ➤ Strategies to optimize and simplify regimens to prevent MTCT (when mothers not on drug for their own disease)
 - Maternal and infant treatment, especially during breastfeeding period
 - Minimize drug resistance and drug toxicity (esp high CD4 moms)
 - Evaluate impact of drug resistance on treatment option of mothers, children, and communities; options for future pregnancies

- > Strategies to optimize drug regimens pre-, periand post-partum (when mothers on drug for their own disease)
 - Further decrease transmission rates
 - Prevent drug resistance
 - Minimize toxicities
 - Simplify delivery
 - Evaluate the development and impact of resistance on MTCT and future treatment options for mother and child

- Evaluate safety and PK of new drugs, drug combinations
 - HIV negative, non-pregnant women
 - HIV positive, non-pregnant women
 - HIV positive, pregnant women
 - HIV positive, very young children
- > Improve strategies for interruption of transmission via breast milk

- ➤ Safety and efficacy of vaccines to prevent BF transmission
- Safety and efficacy of passive immunization of newborns

Microbicide Research

Microbicide Clinical Research and Development: Objectives

- > Identify a microbicide that is very safe and effective (at least partially)
- ➤ Determine correlates of short and long term safety
- ➤ Optimize acceptability and adherence

Microbicide Clinical Research (DMID, NICHD)

- > Conduct all phases of clinical research
 - Focus on products with appropriate safety profile (daily use), multiple mechanisms of attack; combinations
 - X4/R5 HIV; resistance; other STIs; high vs low frequency users; adolescents; conception/pregnancy
 - Phase 1-2
 - Evaluate best 2-3 in phase 2b/3 trials
- > Transparency, cooperation and collaboration

Microbicide Clinical Research (NICHD, CDC, USAID)

- > Explore correlates of safety (and efficacy)
- Evaluate user and partner acceptability and adherence; short and long term; behavioral and cultural factors (NIMH)
- > Evaluate consequences of microbicide use
 - Impact on other risk reduction measures (e.g. sexual risk negotiation in the context of microbicide use)

Microbicide Clinical Research

- ➤ Evaluate novel delivery approaches; single formulation; intercourse dissociated
- Conduct research on rectal products (safety)
- ➤ Evaluate impact on other STDs, immune responses, vaginal defenses
- ➤ Evaluate novel strategies to protect newborns from orally acquired HIV (NIDCR)

Prevention Clinical Research: Objectives

- ➤ Identify more practical, safe and effective approaches to halt the spread of HIV
 - Especially in populations where HIV is spreading most rapidly
- ➤ Generalizable and feasible to scale up and sustain

- > ART to prevent transmission
 - ART or ART combination intervention in acute/early infection
 - Identify approaches to identify, recruit and retain individuals acutely infected with HIV, particularly in resource limited settings
 - Evaluate impact in primary infection on transmission and disease progression; resistance; immune responses, etc
 - ART in established infection
 - PEP and PREP

- ➤ Treatment or prevention of STDs that are co-factors in HIV transmission and/or acquisition (DMID, NIMH)
 - Pharmacologic, vaccines, behavioral, surgical
- ➤ Interventions to reduce HIV acquisition or transmission in drug users; linked biomedical and behavioral interventions (NIDA)
- > Impact of alcohol consumption on transmission (NIAAA)

- ➤ Efficacious, cost-effective, sustainable, behavior interventions to reduce risk behaviors AND HIV acquisition or transmission (NIMH, NINR)
 - Individual and/or community, including adolescents (NICHD/ATN)
 - VCT uptake; abstinence messages; ART availability; sex education
 - "Dosage"; "delivery"; "durability"
- Coordinate with care and treatment programs in resource limited settings

Cross-Cutting Principles

- ➤ Identify underserved or disenfranchised populations (e.g. women, minorities, adolescents, young children)
- Specify barriers to participation in clinical research for these and other special populations
- ➤ Identify highest risk populations to size and cost of vaccine and prevention efficacy trials (epi, incidence)
- Behavioral interventions in all studies (NIMH, NIDA)

Cross-Cutting Principles

- Feed information on seroconverters in vaccine/prevention studies into acute infection data base or studies
- Refer HIV+ during screening to treatment programs or research studies
- Develop common laboratory and data management elements
- Establish a system for address important questions that cannot be studied by a single group
- Genomics Investigate the role of individual and population genetic differences in resistance/susceptibility to infection, responses to therapy, incidence of complications, and course of disease

Coordination and Integration between Networks-starting points

- Share laboratory resources and protocols for data comparability and efficiency
- Work towards common data entry interfaces and data elements
- > Coordinate specimen management
- Share and/or standardize training for common needs
- > Shared responsibility for sites
- Coordinate clinical research product acquisition, distribution and provision
- > Increase inter-network communication
- > Become more efficient with all resources

